来源:科技部

这是电子显微镜领域令人振奋的一项突破,但是图像仅能显示核糖体轮廓。坦白地讲,它更像一团色块,分辨率上完全不能与X射线晶体学的原子级分辨率相提并论。

原子力显微镜是一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。其关键部件是一个对力非常敏感的微悬臂,悬臂尖端带有一个用来扫描样品表面的微小探针。当探针轻微地接触样品表面时,由于探针尖端的原子与样品表面的原子之间产生极其微弱的相互作用力而使微悬臂弯曲。根据扫描样品时探针的偏离量或振动频率重建三维图像,就能间接获得样品表面的形貌或原子成分。原子力显微镜成像具有原子级的分辨率。

澳大利亚格里菲斯大学的研究小组经过五年的不懈努力,首次成功拍摄到单个原子产生的背影图像。这项重要的科学突破发表在最新出版的《自然》系列子刊《自然通讯》上。
科学家们通过俘获元素镱的单个原子离子,把其放在特定频率的光照下,将原子的影子投射至探测器,然后使用高性能数码相机,摄下背影图像。实验过程的精度超乎想象,哪怕仅改变十亿分之一的光频,就看不到任何图像。
这项实验的目的是探索在可见光下能见到原子背影所需的最少原子数。结果证明在高端显微镜的极限条件下,只需一个原子即可见到其背影,小于一个原子则不行。
该成果具有深远的影响。实验不仅有助于进一步证实人类对原子物理的理解,用于量子计算,还可用于生物显微镜。众所周知,过多的紫外线或X射线容易损害微小而又脆弱的生物样品,如DNA链。这项成果使我们能够预测一个原子形成影子需要的光量,这样,我们就可以预测和控制光量,在最佳显微条件下观察细胞内的情况,而不超越样品的安全阈值。

【嵌牛导读】:北京时间10月4日消息,据国外媒体报道,诺贝尔化学奖刚刚揭晓!2017年诺贝尔化学奖授予雅克·杜邦内特(Jacques
Dubochet),约阿希姆·弗兰克(Joachim Frank),以及理查德·亨德森(Richard
Henderson),以表彰他们“在开发用于溶液中生物分子高分辨率结构测定的冷冻电镜技术方面的贡献”。

德国伊尔姆瑙理工大学近日报告说,该校研究人员已研制出硅纳米谐振器,这是目前世界上最小的硅纳米谐振器之一。这一发明可进一步提高纳米级微观结构成像的分辨率,对医学等领域的研究具有重要意义。

现在,让我们把时间再回溯到1978年,此时的弗兰克正忙于完善他的图像处理算法软件,而就在这一年,今年诺贝尔化学奖的第三位获奖人雅克??杜邦内特被设在德国海德堡的欧洲分子生物学实验室录用了。杜邦内特将要解决的是电子显微镜领域的另外一个基础性问题:当被放置于真空腔内时,生物样本是如何干涸并遭到破坏的?

伊尔姆瑙理工大学制成的这种纳米谐振器的宽度只有16纳米,可用作原子力显微镜探针。研究人员称这一成果对原子力显微镜的未来发展和纳米分析具有划时代意义。

现在,梦想已成现实。我们正面对生物化学领域的爆炸式发展。冷冻电镜的诸多优势使其具有了革命性的意义:杜邦内特的玻璃化技术使用相对容易,同时需要的样本量较少;由于快速冷冻过程,生物分子在过程中冻结,研究人员拍摄一系列图像,能够捕捉到该进程的不同部分。

德国发明超微硅纳米谐振器

下一步,研究组将细胞膜样品再次放置到电子显微镜下,从很多不同的角度进行拍摄。通过这种方法,到1975年时他们已经能够得到细菌视紫红质的三维立体结构图像了(图2)。从图像中可以清晰观察到蛋白质链条是如何在细胞膜上来回穿行的。这是历史上使用电子显微镜获得的最佳蛋白质图像。很多人对这样的高分辨率图像印象深刻(其图像分辨率达到了7埃水平,相当于0.0000007毫米)。这是一个惊人的成就,但在亨德森看来,这样的结果还不够好。他的目标是达到X射线晶体学成像方法通常能够达到的分辨率水平——大约3埃左右,并且他坚信利用电子显微镜成像技术,这个目标是可以实现的。

通过这种方法,弗兰克获得了一系列高分辨率的二维图像。这些图像展示的是同一种蛋白质,但是角度不同。整套算法软件到1981年终于完成。下一步,弗兰克必须弄清楚这些不同角度的二维图像之间是如何相互关联的,基于这些信息,他要尝试将这些二维图像合并并构建三位立体图像。弗兰克在1980年代中期对外发布了部分他开发的图像算法,并基于这一算法发布了核糖体的表面结构模型,这是一种在细胞内的细胞器,主要功能是合成蛋白质。

图六

与此同时,在大西洋的彼岸,纽约州卫生署。约阿希姆·弗兰克也一直在思考着同样的问题。在1975年,他发展出一种理论方法,能够将电子显微镜获得的二维平面模糊图像进行分析和叠加处理,最终得到更高分辨率的三维立体图像。但弗兰克最终花费了超过10年时间才逐渐将这一方法一步步完善。

图片 1

这样还不够好

1984年杜邦内特首次通过玻璃水方法拍摄到样本周围的病毒。

第一张原子层面分辨率图像

图一:过去几年间,科学家陆续发布了多种复杂蛋白质复合体的原子结构。a。一种控制昼夜节律的蛋白质复合体。b。一种可感知耳中压力变化、使我们听到声音的感应器。c。寨卡病毒。

在过去的数年间,大量令人惊叹的分子结构充斥着各类文献(如图一):沙门氏菌用于侵袭细胞的注射端;导致化疗以及抗生素失效的蛋白质结构图;以及掌管生物昼夜节律的复杂分子结构等等。这里所展示的还只不过是冷冻电镜技术(cryo-EM)应用领域内很少的案例。当研究人员开始怀疑寨卡病毒和发生在巴西境内导致大量新生儿出现大脑损伤的“小头症”有关联时,他们利用冷冻电镜技术对病毒进行了直接成像。在短短数月内,原子层面分辨率的寨卡病毒的立体三维图像便产生出来了,科学家们基于这些成果迅速研发相应药物。

雅克·杜邦内特、约阿希姆·弗兰克以及理查德·亨德森的突破性贡献让冷冻电镜技术得以成为现实。这项技术将生物化学技术带入了一个崭新的时,让科学家们获取高分辨率生物分子图像变得前所未有的容易。

理查德·亨德森在英国剑桥大学获得X射线晶体学领域的博士学位。他利用这种方法对蛋白质进行成像,但是当他尝试对一种自然地内嵌于细胞膜上的蛋白质进行晶体制备时,却遭遇到巨大困难。膜蛋白难以操控。它们一旦离开原有的自然环境,也就是细胞膜之后,它们就会萎缩成一团毫无用处的物质。

2017年的诺贝尔化学奖授予雅克·杜邦内特(Jacques
Dubochet),约阿希姆·弗兰克(Joachim Frank),以及理查德·亨德森(Richard
Henderson),以表彰他们“在开发用于溶液中生物分子高分辨率结构测定的冷冻电镜技术方面的贡献”。这是一种呈现生物分子三维立体图像的技术方法。使用冷冻电镜技术,研究人员能够将运动中的生物分子进行冷冻,并在原子层面上进行高分辨率成像。这项技术将生物化学带入了一个崭新时代。

从“水滴学”到大变革

然而,很大程度上是由于理查德·亨德森坚信有朝一日电子显微镜将能够提供原子层面分辨率的图像并不断进行着尝试,电子显微镜技术经历着不断进步,它的分辨率正一埃一埃地不断改善,最后一个障碍在2013年被成功突破——一种全新的电子显微镜问世了(图六)。

【嵌牛正文】:

最初,研究小组试图在零下196摄氏度的液氮中玻璃化微小水滴,但一直没能成功,最后用乙烷代替液氮后才最终实现,而乙烷本身则需要先用液氮来进行冷却。在显微镜下,他们观察到一种前所未见的情景。他们一开始认为这应该是乙烷,但是当液滴经过轻微加热,其分子却突然出现重新排列,形成了一种熟悉的冰晶结构。这是一项重要的成就,因为当时很多研究人员认为不可能实现水滴的玻璃化,而现在我们认为,玻璃化的水是宇宙中最常见的水的形式。

【嵌牛鼻子】:化学,原子

相关文章